The open-weight LLM ecosystem is increasingly defined by model composition techniques (such as weight merging, speculative decoding, and vocabulary expansion) that remix capabilities from diverse sources. A critical prerequisite for applying these methods across different model families is tokenizer transplant, which aligns incompatible vocabularies to a shared embedding space. We demonstrate that this essential interoperability step introduces a supply-chain vulnerability: we engineer a single "breaker token" that is functionally inert in a donor model yet reliably reconstructs into a high-salience malicious feature after transplant into a base model. By exploiting the geometry of coefficient reuse, our attack creates an asymmetric realizability gap that sabotages the base model's generation while leaving the donor's utility statistically indistinguishable from nominal behavior. We formalize this as a dual-objective optimization problem and instantiate the attack using a sparse solver. Empirically, the attack is training-free and achieves spectral mimicry to evade outlier detection, while demonstrating structural persistence against fine-tuning and weight merging, highlighting a hidden risk in the pipeline of modular AI composition.